方浪书院 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

第160章 是谁发来的消息?

酒店,

619号房间。

还真别说,

余老师出的题确实有点东西。

李想看着余宏斌给他出的题,陷入了思考当中。

第一张纸上面的四道题他已经写完了,难度偏低,跟奥赛题的水准差不多。

但接下来第二张纸上的题,比起之前砍瓜切菜般随意的那些奥赛题,难度陡然间增加了不少,倒是让他一时找不到思绪。

不过,他要是知道这几道题完全称得上是大学生数学专业竞赛的题目,可能就不会这么纠结了。

因为面对这种难题的时候,他需要时间思考也不奇怪,毕竟大学数学的深度和广度,还有知识面都对学生有一定的要求。

没点天赋和经验,还真就容易被难住。

于是,大概过了五分钟后,杂乱无章的线团被他捋出了一个线头。

李想不禁有些感慨余老师这题出的确实有水平,居然光是思路,就花了他五分钟的时间。

这不能算是凡尔赛,对他来说,五分钟已经算是有一定的难度了,毕竟像刚才自习的时候,余宏斌给他出的那道题,他也就思考了一分钟而已。

迄今他遇到最难的题目,在他手里也不过就撑了三分钟而已。

当然了,像什么世界级的难题,他是没去看过的,开玩笑,咸鱼那还不是能躺就躺?

摇摇头不再多想,开始根据自己的思路在纸上写了起来。

“你在写什么呢?”

中途,另外一边也在学习的沈亦扬好奇问道。

怎么说也是相处了好几天的舍友,就算再怎么社恐,几天的熟悉下来也是能够说两句话的。

不过,或许是他声音太小,也有可能是李想太过认真,并没有注意到他说的什么。

见到李想没回话,沈亦扬也不奇怪,心思敏感的人总是会发现一些不一样东西,就比如这几天下来,他就发现李想看书或者做题的时候,就会格外认真。

当然,他对李想这个拿了满分,性格友善的第一名还是很佩服的,但其中也有家庭因素的影响,在他从小到大所接受的认知里,学习不好的人就是会被人看不起的。

于是乎,沈亦扬不由好奇地来到了李想的身边,探头看了一眼。

看完之后,他就默默地回去了。

果然,人家能拿第一不是没有道理的,写的东西他完全都看不懂。

时间很快过去,

晚上十一点半。

“总算是写完了,不愧是我。”

一直闷头做题的李想放下手中的笔,轻靠在椅背上伸了个懒腰,略显满意的看着被自己答完了的第二张纸。

看了眼时间,又暗自点了点头,不错,一个半小时搞定了八道题,是他的水平了。

当然,那么短时间就能想出这么多道难题,余宏斌老师也确实厉害,要知道这种能力,可不是随便哪个老师都能做到的。

话说,今天的时间好像又用超支了啊。

不过算了,反正已经超支了,再看看最后一题吧。

想到这里,李想坐直身子,顺手将已经斩于马下的第一、二张纸放在一旁,随即拿起那张上面只写了一道题的纸,仔细地看了起来。

“令数列Fn1、Fn2都为1,从第三项开始,每一项都等于前两项之和,试问数列Fn是否存在无穷多的素数?”

众所周知,字越少,题越难。

看完题干之后,李想脑海里的第一个想法就是。

这道题,很难!

而且不是一般的难。

居然让他证明在这样一个数列中存在无穷多个素数?

如果是证明自然数中有无穷个素数还好说,但是证明一个数列中有无穷个素数,那可不是一个简单的事情。

因为对于一个数列中是否存在无穷多个素数,这几乎可以被称之为是一种随机事件,想要完成的话,不是一般的困难。

话说,余老师给他出的题,应该是高等代数吧?

可这道题怎么看,都不太像是跟高等代数有关系的样子?

因为它一看就是道数论题嘛,当然数论也是可以用代数方面的知识去解的。

多项式、矩阵、还是空间或者线性函数?

李想捏着下巴,在脑海里快速过了一下关于高代的知识点,试图从其中找到解出这道题的关键所在。

既然余老师给他出了这道题,那肯定是能解出来的,只是过程可能有点困难而已。

毕竟总不能就因为自己嫌弃了一下题的难度,余老师就搞一个什么数学未解难题给他做吧?

于是,李想在思考的同时,也开始在草稿纸上进行着简单的演算。

既然是演算,那么首先要做的就是先列出这个数列的规律。

李想在纸上写下数列的前面几项。

1,1,2,3,5,8,13,21……

数列中的一个个数字跃然纸上,写着写着李想发现,这玩意儿好像有点眼熟啊?

每一项都等于前两项之和?

这不是就是斐波那契数列吗?

难怪他看这个通项公式的时候会觉得有点眼熟。

斐波那契数列,是以十二世纪的意大利数学家莱昂纳多·斐波那契来命名的,在数学上,这个数列以递推的方式来定义:规定第零项和第一项分别为0,1,其余每项都等于前两项之和,但其中第零项属于特殊项,不算在数列中。

乍一看,大家可能觉得这个数列也没什么了不起的,不就是一个简单的数学规律吗?我上我也行。

比如随便叫个张三\/李四数列,再给它一个定义:规定前三项为1,其余每项都等于前两项之和,或者是规定前三项什么的……反正就是规律就完了。

然鹅,

斐波那契数列之所以特殊,是因为它并不像看起来这么简单,是一个简单的数学规律问题,它还有另外一个大家都很熟悉的名字。

被称之为黄金分裂数列,它的前一项除以后一项的值,会越来越趋近于黄金分割比例,即0.618.

值得一提的是,这个数列在自然界中也很常见,比如向日葵的种子螺旋排列有99%都遵循斐波那契数列来排列,更常见的比如树枝的生长规律也符合这个数列,另外还有松果种子、菜花也有类似的规律存在。

有着如此声名的斐波那契数列,研究它的数学家们,自然也有不少。

甚至在1963年,世界各国一群热衷研究“兔子问题”的数学家们还成立斐波那契协会,并出版了《斐波那契季刊》用以刊登与斐波那契数列相关的研究成果。

不过这都不重要,重要的是李想看着眼前这个关于斐波那契数列的素数问题,他合理怀疑,自己会不会是拿错题了?

但又转念一想,又觉得这个可能性应该不大。

毕竟三张纸是放在一起的,没理由会拿错的啊。

李想摇摇头,回过神将视线投向桌上仅写了一道题的纸上。

算了,题都摆在眼前了,想必肯定是有解决方法的。

只能说余老师不愧是数学教授,这种对前后各种题目难度的把控力度着实厉害。

感叹之余,他也不再多想,看着问题继续思考了起来。

很明显,这是吃了信息差的亏。

因为这个问题确实是一道未解的难题……

但话又说回来了,李想会有这样的误会也不奇怪,毕竟他又不研究斐波那契数列,能知道这个名字都算好的了,又哪会花心思去了解这些?

而且作为咸鱼本鱼,打心眼里就没有想过利用天赋去搞点事,比如证明千禧年七大难题什么的。

何况这个问题名气还不大,夏国大部分的中小学生普遍知道的数学未解难题,说的上来名字的估计也就一个哥德巴赫猜想而已,

就这还是那位陈姓数学家解决了哥德巴赫猜想中的‘1+2’问题时候,出于宣传的目的,将这个问题印在了数学课本上,最后才广为人知的。

而至于剩下的千禧年难题中更加出名的,比如黎曼猜想、bSd猜想、霍奇猜想等等,这些知道的人就更少了。

就这样,

时间缓缓流逝,

眨眼间便过去了十分钟。

他的头脑中已经掀起了一场无尽的风暴,神经末梢的突触间高频率地释放出递质,让他的大脑开始了极深层次的运转中。

很快,一丝灵光一闪而过,

随即李想立马在草稿纸上开始写了起来,

首先将其通项公式写为an-(an-1)-(an-2)=0。

“然后利用解二阶线性齐次递回关系式的方法,那么它的特征多项式为……”

“特征多项式为:λ2-λ-1=0”

“得λ1=1\/2(1+√5),λ2=1\/2(1-√5)”

“即有an=c1λ1^n+c2λ2^n,其中c1,c2为常数,……”

“引入素数定理:π(x)=Li(x)+o(xe^(-c√lnx)(x→∞)),其中Li(x)=……”

写到这里,李想再一次陷入思考中,因为接下来要做的,是要尝试结合两者。

只要两者能够结合起来,那么他就完成了证明。

因为素数定理是基于有无穷多个素数的结论下得出的,只要两者能够包容起来,并且区域都属于无穷大,那么结论即可得出。

即,证明一个大的,那么小的那个也就自然而然的完成了证明。

不过,想要将两者结合起来,并找到其中的联系点,没有想的那么容易,中间还需要进行更加繁多的处理,因为现在它们的关系还太远了……

李想摩挲着自己的下巴,思考着如何对它们进行等价变形。

就在这时,他感觉自己的肩膀被拍了下。

“李想?李想?”

他回过神,扭头看向身旁,是室友沈亦扬。

好奇问道:“怎么了?”

“已经快十二点了,你还不休息吗?”

“嗯,已经十二点了吗?”

李想看了眼时间,这才意识到自己思考的有点太认真了,这个点就算他不休息,沈亦扬也要休息的。

于是他只能暂时放弃继续思考下去,点了点头:“行,准备休息了。”

随后他收拾了下桌上的草稿纸,起身去洗漱了。

洗漱完毕回到床上躺下,灯光暗下,屋内顿时黑漆漆的一片,看着挡住窗外霓虹的窗帘,他心中依然在继续思考着问题的证明方法。

酒店隔音不错,安静的可以让人很轻松的进入睡眠,渐渐地,惦念着思考问题的他也闭上双眼,进入了梦乡。

……

翌日清晨,

被子一角被轻轻掀起,悠然从睡梦中转醒的李想离开被窝,先一步去卫生间洗漱去了。

等他出来的时候,沈亦扬也醒了,他待会儿要去上集训课,就这个态度而言,比他这个咸鱼来说是要好了太多。

不过主要还是上课讲的东西,对现在的他来说都太简单了,奥数什么的,还不是手拿把掐嘛。

笑着打了个招呼,随后等沈亦扬洗漱完后,两人一起下楼去餐厅吃了一顿早餐,等重新回到房间的时候,才八点半不到。

看着时间还早,李想也没有虚度光阴,走到桌子前坐下,继续研究起了昨晚的那个问题。

顺着昨天晚上睡觉前理出来的思路,他再次将身心投入其中。

但天不遂人愿,在尝试了各种方法后,终究是没有一个好的办法去解决问题,无形中就好像有道难以跨越的鸿沟一般,在阻止着他将昨晚上列出的那两个式子结合起来。

说起来,这还是他第一次被一道题,难住如此之久,平时顺畅无比的思路,此时却是卡住了,果然,自己还是太菜了呀。

遇到棘手的问题怎么办?

一手撑着下巴望向窗外,一手转动着手中的黑色中性笔,李想心里想着,要不直接去问问余老师这道题怎么做?

不过随即便否定了这个想法,万事应尽全力,这才哪到哪儿啊?而且就算真的要问,那也要等实在想不出来了再去嘛。

修长的手指无意识的带动黑色中性笔,在灵动的指尖不停翻飞,如同一场美妙的舞蹈一般,让人赏心悦目,要是平时,说不定他还会玩点高难度动作,再整点花式什么的。

不过现在这会儿,李想倒是没什么闲情雅致了,算算时间,他已经思考了快三个小时了。

要知道这可是整整三个小时啊,就算是再给他一套cmo的试题估计都写完了,而现在却连一点思路都没有。

“不知道数学升到6级之后,解起这个问题会不会变得简单一点?”

想到这里,李想调出面板看了一眼,望着离下一个等级还差十万八千里的经验条,又无奈的摇了摇头。

数学想升到6级,怕是得让他去把大学的知识都看一遍才够,但是现在也来不及,得花时间,真到了升级那天都不知道猴年马月了。

就在这时,

放在一旁的手机突然响了一下。

是微信的提示音。

紧接着又连续响了几声。

被这一打扰,李想回过神,关掉面板,拿起手机看了一眼。

……

求推荐,求收藏,求月票,求打赏!!!

感谢:沧海水;破锋1985;支持的月票!

方浪书院推荐阅读:倾世医妃男友居然没有超能力四合院秦淮茹给傻柱生下三胞胎穿成八零军嫂,炮灰女配开启逆袭顾影帝独家秘闻小可怜揣崽,秦少抱走日日宠造物主语录和顶流影帝结婚后绛色玫瑰芦苇之在水一方没灵根,靠平板电脑修炼成功解约后,我倒欠金主三千万穿越乱世,我带族人向山林走去星穹铁道:生命因何叹息火影:大筒木小南!过了蒙德主线开始摆烂的屑空原神:从璃月开始当掌门人我凑数的那些年之一二事重生随奖神棍很神王爷影响了我的拔剑速度变成女生后,女主追求不一样的我离婚后,豪门千金被影帝求婚了御兽去修仙关于转生成异猫被黯盯上这档事十倍返现,神豪姐姐在线打赏怀孕后,我闪了个豪门世家叶少你好,我是你妈指定的老婆!重生之不嫁太子嫁晋王翻身契在轮回空间的轮回者穿越忍界:我可是来当道祖的快穿之好男人操作指南追妻:傅总,少奶奶带球跑了凡人修仙:从捡到玉碗开始坏心宿主玩脱,重新攻略崩坏男主法眼:明王全能卧底:她是国家守护神我在末世拥有了躺平生活恭送道友飞升偷偷招惹LOL:快苟到世一上,你玩实名制?综影之我在清剧里想摆烂葱茏如叶摆烂后我重生了福天记等穗抽芽等爱开花茵绝遥全家重生,五岁萌宝被全京城团宠
方浪书院搜藏榜:我在末世拥有了躺平生活恭送道友飞升偷偷招惹LOL:快苟到世一上,你玩实名制?综影之我在清剧里想摆烂葱茏如叶摆烂后我重生了福天记等穗抽芽等爱开花茵绝遥全家重生,五岁萌宝被全京城团宠我爹是皇上鬼帝狂妃倾天下在朝堂被偷听心声后,他们都颠了梦回花国娘子别走,为夫一定认真背夫纲现实世界里的爱丽丝末世重生,只想囤粮摆烂度日非人世界的人类生活普通人快穿指南八零年代探案日常就是爱你,小糯米梦初迷离总有叹惋穿成末世文漂亮女配,男主宠上瘾全民武道:我以诡魂凶兽为食逃荒海岛,奶包福运绵绵赶海发家小马宝莉:马格分裂的公主炮灰好像变了你好呀,作文杀穿诡片世界前任求着我回去云阁飞梦穿成修仙界的凡人公主后我登基了人在武动,开局签到药老戒指尘世长生仙契约新妻怀孕出逃除我以外,全队反派厉少你前妻带崽来抢家产啦云霞女神的第一百零一次历劫觉醒蓝银草的我被认为是木遁凡人?系统君你再说一次!快穿:娇娇绑定生子系统被宠翻了他红了眼眶,哑声祈求,亲亲我吧寒水楼我是阴阳两界巡查使野诱生欢四合院:我,傻柱成就厨神!武道起源这个杀手有亿点财迷军阀权宠,夫人原来是病娇黑莲花
方浪书院最新小说:不能跳舞就演戏,圈里混出一席地凤战止戈躲在村子的我,成了万道师祖!暗区突围:淘金者断亲后,真千金成了太子爷心尖尖诡话乱谈从乞丐开始斩妖除魔玫瑰落日西游:谁说邪门CP不能甜?四合院:系统解除限制后我起飞了再相遇顾少拿全世界宠着她五等分:五等分的恋人宠溺小娇妻,手撕疯批前夫惊,玄学大佬竟是鬼怪它祖宗四合院之狂怼众禽,享飞扬人生快穿美人她一胎多宝小豆包的婚后幸福生活嫁给闺蜜小舅后,稳坐大佬心尖宠原来你早就喜欢我穿越七零:我带弟妹靠发疯斗极品妹想到吧?我是公主!婆婆让我守活寡?军官老公回来了迷途中寻找自我京城女仵作网王:从签到开始的网球传奇重生被当做了炉鼎从我不是渣男开始诸天旅行我在人间摆烂【儿子是天道】恶毒女配被读心后,成了万人迷凡人仙葫群狼环伺,我在暗黑虐文艰难求生我都绝症了,就给我个相亲系统?神豪系统:成为富婆从打赏开始快穿之宿主她千娇百媚太会撩医术在身,穿到古代成团宠说好半年后离婚:陆总你怎么哭了吴钩月冷魔界九公主之洛哥传破产后,召唤皇帝们给我打工暴富娱乐为王之全球第一女导演金门爱她入骨,禁欲总裁霸宠小助理手握蹭饭系统我分分钟进账几十万与变身基友的异世界任务衰神王爷撩不动九九重生每天一个小故事练胆盗墓笔记之最终救赎原神逆神之路重生九十年代小村庄